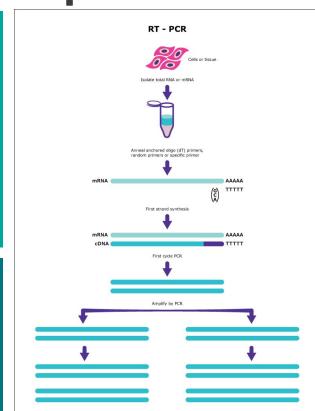
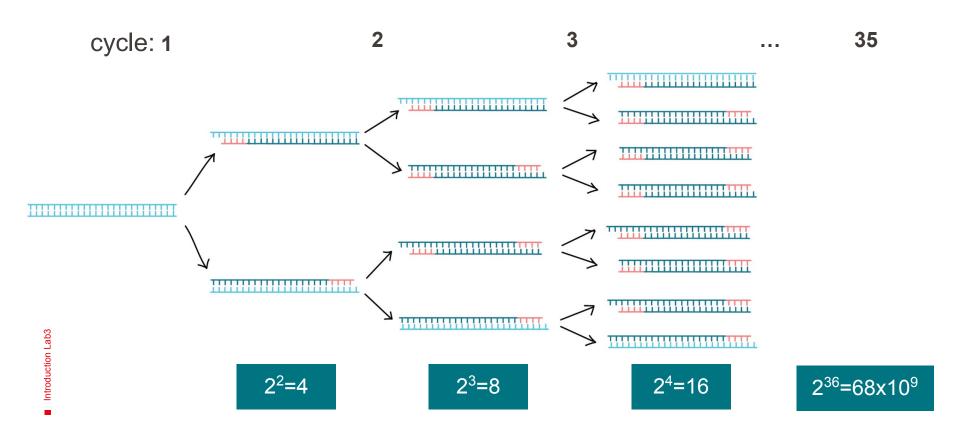
- Polymerase Chain Reaction (PCR)
- DNA cloning strategies


PCR amplification of Amy2 cDNA

- Objectives:
 - To amplify Amy2 coding sequence by PCR in order to clone it into a mammalian expression vector.
 - To analyze the PCR products (amplicons) by agarose gel electrophoresis.

PCR template: pancreas-specific cDNA pool

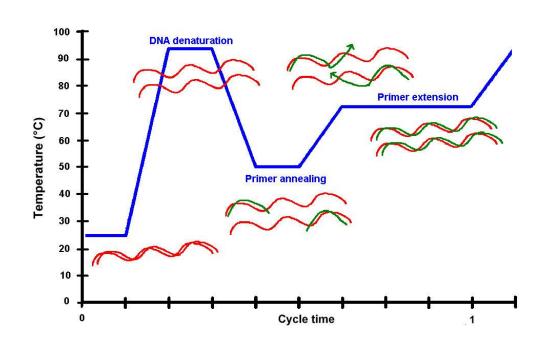

laboratory 2

aboratory 3

EPFL

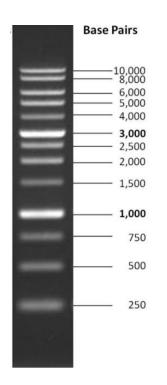
PCR amplification is exponential

PCR: Experimental design

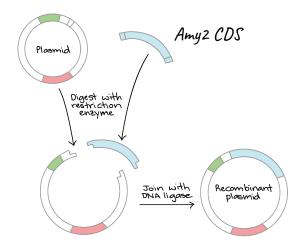

- A. (+) RT sample: cDNA produced by reverse transcription from mouse pancreatic total RNA
- B. (-) RT negative control: RT reaction lacking reverse transcriptase. Used to detect potential contamination of the RNA sample by DNA.
- C. PCR positive control: plasmid DNA containing the sequence of interest. PCR product of condition A should show identical profile to that of C.
- D. PCR negative control: water instead of template to detect potential contamination of reagents. No amplification should be observed.

EPFL

PCR cycling reactions


- Three cycling steps:
 - Denaturation (95 °C)
 - Annealing (~45-60 °C)
 - Extension (72 °C)

Analysis of PCR products by agarose gel electrophoresis



- DNA ladder consist of several DNA fragments with different length
- You can estimate the size of the amplified PCR product by comparison to the ladder
- A specific dye (GelRed) in the agarose gel intercalates between DNA base pairs
- Fluorescent dye-nucleic acid complexes are then visualized with UV light

EPFL

DNA cloning strategies

- Objectives:
 - To retrieve a sequence of interest from NCBI database.
 - To design cloning strategies using Benchling software.

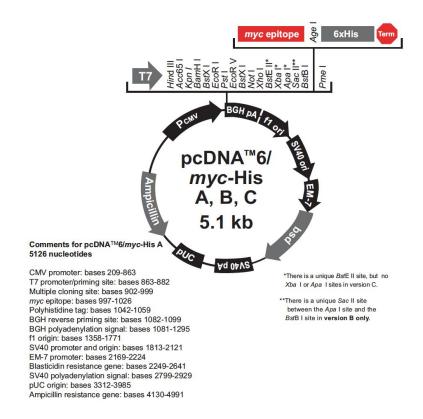
Retreive sequence of interest in NCBI database

S NCBI RE	sources 🗹 How To 🗹
Nucleotid	e Nucleotide ‡
	Limits Advanced
Display Settings	¿ ☑ GenBank
Mus mu	sculus amylase 2a5 (Amy2a5), mRNA
NCBI Referen	ce Sequence: NM_001042711.2
FASTA Grap	nics
Go to: ☑	
LOCUS	NM_001042711 1577 bp mRNA linear ROD 15-AUG-2011
ACCESSION	Mus musculus amylase 2a5 (Amy2a5), mRNA. NM 001042711 NM 001042712 NM 009669
VERSION	NM 001042711.2 GI:142356897
KEYWORDS	.=
SOURCE ORGANISM	Mus musculus (house mouse)
	Mus musculus
	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
	Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia;
REFERENCE	Sciurognathi; Muroidea; Muridae; Murinae; Mus; Mus.
REFERENCE	1 (bases 1 to 1577)

Scroll down

Find Amy2 coding sequence (CDS)

```
18..1544
CDS
                /gene="Amy2a5"
                /gene synonym="1810008N23Rik; Amy-2; Amy2; mAmy2-2"
                /EC number="3.2.1.1"
                /note="amylase 2a5, pancreatic; pancreatic alpha-amylase;
                PA; 1,4-alpha-D-glucan glucanohydrolase; amylase 2,
                pancreatic"
                /codon start=1
                /product="pancreatic alpha-amylase precursor"
                /protein id="NP 001036176.1"
                /db xref="CCDS:CCDS17775.1"
                /db xref="GeneID:109959"
                /db xref="MGI:MGI:88020"
                /translation="MKFVLLLSLIGFCWAQYDPHTSDGRTAIVHLFEWRWVDIAKECE
                RYLAPKGFGGVQVSPPNENVVVHNPSRPWWERYQPISYKICTRSGNEDEFRDMVTRCN
                NVGVRIYVDAVINHMCGAGNPAGTSSTCGSYLNPNNREFPAVPYSAWDFNDNKCNGEI
                DNYNDAYOVRNCRLTGLLDLALEKDYVRTKVADYMNHLIDIGVAGFRLDAAKHMWPGD
                IKAVLDKLHNLNTKWFSQGSRPFIFQEVIDLGGEAIKGSEYFGNGRVTEFKYGAKLGT
                VIRKWNGEKMSYLKNWGEGWGLVPSDRALVFVDNHDNQRGHGAGGSSILTFWDARMYK
                MAVGFMLAHPYGFTRVMSSYRWNRNFONGKDONDWIGPPNNNGVTKEVTINADTTCGN
                DWVCEHRWRQIRNMVAFRNVVNGQPFSNWWDNNSNQVAFSRGNRGFIVFNNDDWALSA
                TLQTGLPAGTYCDVISGDKVDGNCTGLRVNVGSDGKAHFSISNSAEDPFIAIHADSKL
                18..62
sig peptide
                /gene="Amy2a5"
```



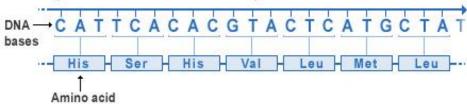
Find the start and stop codon within

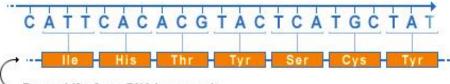
```
1 gacaacttca aagcaaaatg aagttcgttc tgctgctttc cctcattggg ttctgctggg
  61 ctcaatatga cccacatact tcagatggga ggactgctat tgtccacctg ttcgagtggc
 121 gctgggttga tattgccaag gaatgtgagc gatacttagc tcctaaggga tttggagggg
 181 tgcaggtctc tccacccaat gaaaacgttg tagttcataa cccatcaaga ccttggtggg
 241 aaagatacca accaatcagc tataaaatct gcacaaggtc tggaaatgaa gatgaattca
 301 gagacatggt gacaaggtgc aacaatgttg gtgtccgtat ttatgtggat gctgtcatta
 361 accacatgtg tggcgcaggc aatcctgcag gaacaagcag tacctgtgga agttacctca
 421 atccaaataa cagggaattc ccagcagttc catactctgc ttgggacttt aacgataata
 481 aatqtaatqq aqaaattqat aactacaatq atqcttatca qqtcaqaaat tqtcqtctqa
 541 ctggccttct ggatcttgca cttgagaaag attatgttcg taccaaggtg gctgactata
 601 tgaaccatct cattgacatt ggagtagcag ggttcagact tgatgctgct aagcacatgt
 661 gqcctqqaqa cataaaqqca qttttqqaca aactqcataa tctcaataca aaatqqttct
 721 cccaaggaag cagacettte attttccaag aggteattga tetgggtggt gaggeaatta
 781 aaggtagtga gtactttgga aatggccgtg tgacagaatt caagtatggt gcaaaacttg
 841 gcacagttat ccgcaagtgg aatggcqaga agatgtccta tttaaagaac tggggagaag
 901 gttggggttt ggtgccttct gacagagccc ttgtgtttgt ggacaaccat gataatcagc
 961 gaggacatgg tgctggagga tcatccatcc tgacattctg ggatgctaga atgtataaaa
1021 tggctgtcgg atttatgttg gctcatcctt atggattcac aagagtaatg tcaagttacc
1081 gttggaatag aaatttccag aatggaaaag atcagaatga ctggattgga ccacccaata
1141 acaatggagt aacaaaagaa gtgaccatta atgcagacac tacttgtggc aatgactggg
1201 tctqtqaaca caqatqqcqt caaatcaqqa acatqqttqc cttcaqqaat qtqqtcaatq
1261 gtcagccttt ttcaaactgg tgggataata acagcaacca agtagctttt agcagaggaa
1321 acagaggatt cattgtcttt aacaatgatg actgggcttt gtcagccact ttacagactg
1381 gtcttcctgc tggcacatac tgtgatgtca tctctggaga taaggtcgat ggcaattgca
1441 ctggacttag agtgaatgtt ggcagtgatg gcaaagctca cttttccatt agtaactctg
1501 ctgaggaccc atttattgca atccatgctg actcaaaatt gtaagaatct atattaaaga
1561 gatttggatt aagcatc
```


Cloning of Amy2 CDS in mammalian expression plasmid

Primer design for protein expression

- Cloning of Amy2 coding sequence into expression plasmid:
 - The forward primer includes the start codon.
 - For C-terminal fusion remove stop codon.
 - Add suitable restriction sites at the 5' end of your primers and 2-3 additional bases at the 5' end (required for optimal cleavage by the restriction enzyme).
- Protein production in eukaryotic cells:
 - Add Kozak consensus sequence (ACCATGG) if not present on plasmid.
 - This regulatory sequence allows efficient translation initiation in eukaryotic cells.
 - Check the reading frame!


Check the open reading frame (ORF) of Amy2 fusion protein


- The ORF includes the Amy2 start codon, Amy2 CDS, myc-HIS tag and ends after the stop codon (in the plasmid)
- The plasmid is provided with three different reading frames A, B and C.
- Primer and plasmid must be chosen to create the correct fusion protein
- The addition or deletion of a base pair(s) in the primers may cause a frameshift, resulting in the translation of the genetic code in an unnatural reading frame

Frameshift mutation

Frameshift mutation

Original DNA code for an amino acid sequence.

Frameshift of one DNA base results in abnormal amino acid sequence.